Hi, Continue visiting your profile
user

Login

Email

Password

Create account
Forget password
Reset Password
you forgot your password?

Please enter your email address that you have used during registration:

AnyGenes

WHAT IS ADIPOGENESIS?

Adipogenesis refers to the process by which pre-adipocytes differentiate into mature adipocytes (fat cells). This critical biological mechanism plays a significant role in regulating energy balance, metabolism, and various physiological functions. Adipogenesis is influenced by multiple signaling pathways, transcription factors, and gene expressions that dictate the commitment and maturation of stem cells into adipocytes

AnyGenes offers advanced qPCR arrays to support adipogenesis research by helping researchers analyze key genes and pathways involved in fat cell differentiation. Our custom qPCR arrays are designed to measure the expression of genes such as PPARγ, C/EBPα, and other crucial regulators of adipogenesis. With AnyGenes' reliable products, you can enhance your understanding of adipogenesis and its role in health and disease.

Study adipogenesis pathways with AnyGenes qPCR arrays for gene expression analysis.

Discover our advanced qPCR arrays for Adipogenesis research.

REGULATION OF ADIPOGENESIS

In mammalian cells, the transcription factors associated with adipogenesis control the differentiation of adipocytes. This includes the CCAAT/enhancer binding proteins (C/EBPs)(C/EBPα, β, and δ) and peroxisome proliferator-activated receptor γ (PPARγ). Fatty acid synthase (FAS), adiponectin, and fatty acid binding protein 4 (FABP4) combine to form mature adipocytes.
In addition to PPARγ and C/EBPα, other transcription factors positively regulate adipocyte differentiation. The Kruppel-like factors (KLFs) are among them. Activation of the KLF transcription factors KLF4KLF5KLF9, and KLF15 accompanies adipocyte differentiation in 3T3-L1 cell lines.

Researchers have shown that ectopic expression of KLF15 in NIH 3T3 cells induces lipid accumulation and expression of PPARγ. This suggests that KLF15 plays an important role in adipogenesis.

Expression of the active form of CREB in 3T3-L1 pre-adipocytes is sufficient to induce adipogenesis. CREB induces accumulation of Triglyceride and expression of two adipocyte marker genes, PPARγ and fatty acid binding protein.

In vitro studies show that transforming growth factor β (TGF-β) target the transcription factors linked to adipogenesis. PPAR, C/EBPβ, and C/EBPδ factors, followed by TGF-β-mediated adipogenesis inhibition. TGF-β inhibits adipocyte differentiation by interacting with C/EBP and repressing its transcriptional activity.

TYPE OF ADIPOSE TISSUE

There are two primary types of adipose tissue based on their biological functions:

  • White adipose tissue is in various parts of the body. It is under the skin (subcutaneous adipose tissue), around organs, and in female breasts (called mammary adipose tissue). This type of tissue is the most abundant and serves as a crucial energy storage in the form of triglycerides. Additionally, it functions as an important endocrine organ, primarily involved in weight regulation.
    White adipocytes secrete leptin and adiponectin as well as common growth factors, hormones, cytokines, and chemokines...
  • Brown adipose tissue, characterized by energy expenditure, located in the regions near the neck, specifically the para-cervical and supra-clavicular areas. It plays a significant role in regulating heat production in response to food intake and cold temperatures. Among the genes expressed in brown adipose tissue, sterol regulatory element-binding protein 1 (SREBP1).

THE PROCESS OF ADIPOGENESIS AND ITS CONNECTION TO VARIOUS DISEASES

Adipocyte differentiation studies are important for controlling obesity in humans and animals. Obesity can lead to complications like type II diabetes, hypertension, and heart disease.
The adipose tissue spreads into different organs. This brings adipocytes into close contact with cancer cells in many solid tumors. During tumor growth, local invasion or bone metastases as well as in blood cancers.
Produced molecules like leptin and HGF can cause cancer cells to secrete various MMPs, thereby indirectly promoting tumor invasion. In breast cancer, adipocytes (stromal cells), play a critical role in the growth, survival and invasion.

Adipogenesis and its connection to various diseases

 
Role of adipocyte as an active facilitator in breast cancer initiation, progression and metastasi
.

During postsurgical autologous fat grafting, adipocytes can pose challenges to therapy by resisting different breast cancer treatments. Additionally, they may serve as a reservoir for dormant tumor cells.
Sheng and colleagues recently reported an additional and potentially important mechanism by which adipocytes contribute to drug resistance. They reported that adipocytes not only sequester the chemotherapeutic drug daunorubicin, but also efficiently metabolize it to a metabolite with reduced therapeutic efficacy, daunorubicinol.

Adipogenesis_in_tumor_microenvironment

 
Adipose tissue effects in the tumour microenvironment

(1) Moseti D & al. Molecular Regulation of Adipogenesis and Potential Anti-Adipogenic Bioactive Molecules. Int J Mol Sci. (2016) 19;17(1).
(2) Han J & al. Regulation of Adipogenesis Through Differential Modulation of ROS and Kinase Signaling Pathways by 3,4'-Dihydroxyflavone Treatment. J Cell Biochem. (2017);118(5):1065-1077.
(3) Zhang Z1 & Scherer PE. Adipose tissue: The dysfunctional adipocyte - a cancer cell's best friend. Nat Rev Endocrinol. (2018);14(3):132-134.
(4) Duong MN & al. The fat and the bad: Mature adipocytes, key actors in tumor progression and resistance. Oncotarget. (2017).
(5) Choi J & al. Adipocyte biology in breast cancer: From silent bystander to active facilitator. Prog Lipid Res. (2018);(69):11-20.

ADIPOGENESIS SIGNALING PATHWAY BIOMARKER LIST

Customize your own signaling pathways (SignArrays®) with the factors of your choice!
Simply download and complete our Personalized SignArrays® information file and send it at contact@anygenes.com to get started on your project.

You can check the biomarker list included in this pathway, see below:
Quitter la version mobile